首页> 外文OA文献 >Programming current reduction via enhanced asymmetry-induced thermoelectric effects in vertical nanopillar phase change memory cells
【2h】

Programming current reduction via enhanced asymmetry-induced thermoelectric effects in vertical nanopillar phase change memory cells

机译:通过增强的不对称诱导编程电流减少   垂直纳米柱相变存储单元中的热电效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoelectric effects are envisioned to reduce programming currents innanopillar phase change memory cells. However, due to the inherent symmetry insuch a structure, the contribution due to thermoelectric effects on programmingcurrents is minimal. In this work, we propose a hybrid phase change memorystructure which incorporates a two-fold asymmetry specifically aimed tofavorably enhance thermoelectric effects. The first asymmetry is introduced viaan interface layer of low thermal conductivity and high negative Seebeckcoefficient, such as, polycrystalline SiGe, between the bottom electrodecontact and the active region comprising the phase change material. Thisresults in an enhanced Peltier heating of the active material. The second oneis introduced structurally via a taper that results in an angle dependentThomson heating within the active region. Various device geometries areanalyzed using 2D-axis-symmetric simulations to predict the effect onprogramming currents as well as for different thicknesses of the interfacelayer. A programming current reduction of up to $60\%$ is predicted forspecific cell geometries. Remarkably, we find that due to an interplay ofThomson cooling in the electrode and the asymmetric heating profile inside theactive region, the predicted programming current reduction is resilient tofabrication variability.
机译:设想了热电效应以减小纳米柱相变存储单元中的编程电流。然而,由于这种结构固有的对称性,所以由于热电效应对编程电流的贡献是最小的。在这项工作中,我们提出了一种混合相变存储结构,该结构结合了两个非对称性,专门用于有利地增强热电效应。通过在底部电极触点和包括相变材料的有源区之间的低导热率和高负塞贝克系数(例如多晶SiGe)的界面层引入第一不对称性。这导致活性材料的珀耳帖加热增强。第二个通过锥度在结构上引入,该锥度在有源区内导致与角度相关的汤姆森加热。使用2D轴对称仿真分析各种器件的几何形状,以预测对编程电流以及界面层不同厚度的影响。对于特定的单元几何形状,预计编程电流最多可减少$ 60 \%$。值得注意的是,我们发现,由于电极中的汤姆森冷却和有源区内部的不对称加热曲线之间的相互作用,因此预测的编程电流减小对制造可变性具有弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号